

Betriebsanleitung PS-AMS1x mit Feldbus-Schnittstelle CANopen

Version 2019/10/17

©2019 PS Automation GmbH

Änderungen vorbehalten!

Inhalt

1. Kurzbeschreibung	4
2. Feldbusanschluss	4
2.1 Anschluss auf Klemmenblock	4
2.1.1. Terminierung	5
2.1.2. Fieldbus-Status-LED	5
2.2 Schiebeschalter zur Auswahl der Schnittstelle	6
3. Einstellung von Feldbus-Adresse & Übertragungsrate	6
4. Prozessdatenobjekte	7
4.1. Prozessdatenobjekte "Bus-Input"	7
4.1.1. Byte 0 - Sollwert High-Byte	7
4.1.2. Byte 1 - Sollwert Low-Byte	7
4.1.3. Byte 2 - Prozess-Sensor High-Byte	7
4.1.4. Byte 3 - Prozess-Sensor Low-Byte	7
4.1.5. Byte 4 - Kommando	8
4.1.6. Byte 5 - Adresse	8
4.1.7. Byte 6 - Data-High	8
4.1.8. Byte 7 - Data-Low	8
4.2. Prozessdatenobjekte "Bus-Output"	8
4.2.1. Byte 0 - Istwert High-Byte	8
4.2.2. Byte 1 - Istwert Low-Byte	8
4.2.3. Byte 2 - Betriebszustand / Fehlercode des Antrieb	9
4.2.4. Byte 3 - Adresse	9
4.2.5. Byte 4 - Data High-Byte	9
4.2.6. Byte 5 - Data Low-Byte	9
5. Technische Daten	
6. Parameterspeicheradressen	
7. Servicedatenobjekte (SDO) nach CANopen Spezifikation DS-301	
Anhang: Prozessdatenobjekte CANopen in PS-AMS	

1. Kurzbeschreibung

Über das optionale Feldbus-IC CANopen kann der Antrieb an ein CANopen-Netzwerk angeschlossen werden. Dieses Interface kommuniziert über die eingebaute serielle Schnittstelle mit dem Antrieb. Der Antrieb wird dann ohne analoge Eingangssignale betrieben. Auch Eingangssignale aus einem Prozess-Sensor für den optional im Antrieb integrierten Prozessregler PSIC können digital vorgegeben werden. Über eine Kommandoebene können alle Parameter sowie Diagnosedaten des Antriebs auf Wunsch ausgelesen und in der Leitstelle verwendet werden.

Die Einstellung der antriebsinternen Parameter ist per Feldbus nicht möglich.

Achtung: Der Antrieb hat nur eine Kommunikationsschnittstelle. Diese ist mit dem Einbau des optionalen Feldbus-Interfaces belegt. Zur Parametrierung des Antriebs mittels PC-Software PSCS muss ein Schalter auf der Haupt-Leiterplatte des Antriebs PS-AMS1x umgeschaltet werden, siehe 2.2 Schiebeschalter zur Auswahl der Schnittstelle. Danach ist die Kommunikation über das Datenkabel mit dem PC möglich. Nach der Parametrierung per PC muss der Schalter wieder auf die Stellung "Feldbus" umgeschaltet werden, damit das Feldbusmodul mit dem Antrieb kommuniziert.

-> Siehe auch Bedienungsanleitung AMS-PSCS

Achtung: Der Punkt "Digitaler Sollwert" (in der Kommunikationssoftware AMS-PSCS unter Bedienen -Parametrierung - Soll- & Istwertsignale) muss aktiviert sein, damit der Antrieb dem über den Feldbus übertragenen Sollwert folgt.

Achtung: Während der Kommunikation mit dem PC können unsinnige Daten in den (Feldbus-basierten) Prozessdatenobjekten erscheinen.

2. Feldbusanschluss

Achtung: Bei allen Arbeiten auf oder an der Antriebsplatine muss auf ausreichende Erdung des Ausführenden geachtet werden. Ein Notbehelf ist das feste Berühren des Antriebsgehäuses mit der bloßen Hand vor Beginn der Arbeiten am Antrieb, zum Herstellen eines Potentialausgleichs.

2.1 Anschluss auf Klemmenblock

Die Einführung der Feldbus-Leitungen erfolgt durch zwei spezielle Metall-Verschraubungen, die das Auflegen der Abschirmung ermöglichen. Der Aufbau der Verschraubung ist in Abbildung 1 EMV-Kabelverschraubung mit Erdungskonen

dargestellt.

Abbildung 1 EMV-Kabelverschraubung mit Erdungskonen

Der Anschluss der Feldbus-Kabel erfolgt auf einen Klemmenblock auf der AMS-Hauptplatine. Die jeweils zwei Feldbus-Adern müssen entsprechend der folgenden Tabelle an die in Bild 2 dargestellten Klemmen angeschlossen werden.

Signal	Anschlus	sklemme
CAN_High	B1	B2
CAN_Low	A1	A2

Antriebs für Feldbus-Anschluss

2.1.1. Terminierung

Terminierung des Busses erfolgt über den Terminierungsschalter neben dem Klemmenblock, siehe Bild 2. Es müssen immer beide Schalter in dieselbe Richtung betätigt sein.

2.1.2. Fieldbus-Status-LED

Neben den Anschlussklemmen befindet sich eine einzelne rote Leuchtdiode (LED), die den Buszustand signalisiert, siehe Bild 2.

LED Aus = Modus "Datenaustausch" LED blinkt = Keine Verbindung mit dem Feldbus

2.2 Schiebeschalter zur Auswahl der Schnittstelle

Auf der Leiterplatte im Antriebsinnenraum befindet sich ein Schiebeschalter zur Auswahl der Schnittstelle, siehe Abbildung 3 Schiebeschalter zur Schnittstellenwahl.

Im normalen Betrieb, d.h. wenn der Antrieb über den Feldbus angesteuert werden soll, muss sich der Schalter in der unteren Stellung (roter Pfeil) befinden. Zur Einstellung, Parametrierung, etc. mit der Kommunikationssoftware PSCS muss die Schnittstelle auf PC-Kommunikation umgestellt werden (gelber Pfeil).

Achtung: Nach Abschluss der Einstellarbeiten muss der Schalter wieder in die untere Stellung geschoben werden. In der oberen Stellung ist zwar das Interface über den Bus ansprechbar, aber es kommuniziert nicht mit der Antriebselektronik!

gelb = PC-Kommunikation

rot = Feldbus-Ansteuerung

Abbildung 3 Schiebeschalter zur Schnittstellenwahl

3. Einstellung von Feldbus-Adresse & Übertragungsrate

Im Auslieferzustand ist der Antrieb auf die Adresse 0 konfiguriert. Die Adresse und die Übertragungsrate können vom Betreiber bei der Inbetriebnahme über zwei Dreh-Codierschalter geändert werden, siehe Abbildung 4 Drehschalter zur Einstellung von Adresse und Baud-Rate. Nach der Änderung muss der Antrieb zum Übernehmen kurz aus- und wieder eingeschaltet werden.

Abbildung 4 Drehschalter zur Einstellung von Adresse und Baud-Rate

Einstellung der Adressen (0 bis 63) sowie der Übertragungsrate erfolgt gemäß der folgenden Tabelle:

Codeschalter		S3	02			S3	01	
	Η	IGH	0	F	L	.OW	0	F
00 FF	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Einstellung der Adresse			N	ode	ID [0	06	3]	
Einstellung der Übertragungsrate	0	0	500) kBa	aud			
	0	1	250) kBa	aud			
	1	0	125	5 kBa	aud			
	1	1	50	kBa	ud			

4. Prozessdatenobjekte

Siehe Tabelle "Prozessdatenobjekte AMS CANopen" im Anhang.

4.1. Prozessdatenobjekte "Bus-Input"

Die Ansteuerung des Antriebs (als Slave) durch den Feldbus-Master erfolgt gemäß den Prozessdatenobjekten "Bus-Input".

4.1.1. Byte 0 - Sollwert High-Byte

Bit 7 von Byte 0 (MSB) legt fest, ob die Eingabe in Prozent (MSB = 0) oder Promille (MSB = 1) erfolgt.

4.1.2. Byte 1 - Sollwert Low-Byte

Die Eingabe erfolgt entsprechend dem MSB von Byte 0.

4.1.3. Byte 2 - Prozess-Sensor High-Byte

Bit 7 von Byte 2 (MSB) legt fest, ob die Eingabe in Prozent (MSB = 0) oder Promille (MSB = 1) erfolgt.

Achtung: Bei Verwendung eines analogen Prozess-Sensors müssen Byte 2 und Byte 3 mit "0xFF" beschrieben werden!

4.1.4. Byte 3 - Prozess-Sensor Low-Byte

Die Eingabe erfolgt entsprechend dem MSB von Byte 2.

Achtung: Bei Verwendung eines analogen Prozess-Sensors müssen Byte 2 und Byte 3 mit "0xFF" beschrieben werden!

4.1.5. Byte 4 - Kommando

Über das Kommando-Byte können Daten in den Speicher des Antriebs geschrieben und aus dem Speicher des Antriebs gelesen werden.

0x00 = keine Aktion

0x20 = sende Daten für RAM 0x21 = lese Daten aus RAM

0x1D = sende Daten für E²PROM 0x1E = lese Daten aus E²PROM

Achtung: Um sicherzustellen, dass das Kommando mit der richtigen Adresse und den richtigen Daten ausgeführt wird, muss beim Beschreiben des Prozessdatenobjektes wie folgt vorgegangen werden:

Kommando Byte 4 = 0x00 schreiben Adresse (Byte 5), Data-High (Byte 6) und Data-Low (Byte 7) schreiben Nun das Kommando z.B. 0x1E übertragen. Das Kommando wird einmalig an den Antrieb übertragen. Um erneut ein Kommando zu senden, muß zuerst wieder 0x00 als Kommandobyte geschrieben werden.

Achtung: Bei einer Daten-Anforderung stehen die Daten nach 250 ms an Byte 4 und Byte 5 des Prozeßdatenobjektes "Bus-Output" zur Verfügung.

4.1.6. Byte 5 - Adresse

Adresse für den Speicherzugriff

4.1.7. Byte 6 - Data-High

High-Byte der Daten, die geschrieben werden sollen

4.1.8. Byte 7 - Data-Low

Low-Byte der Daten, die geschrieben werden sollen

4.2. Prozessdatenobjekte "Bus-Output"

Die Rückmeldung des Antriebs (als Slave) an den Feldbus-Master erfolgt gemäß dem Prozessdatenobjekt "Prozessabbild Eingang".

4.2.1. Byte 0 - Istwert High-Byte

Die Ausgabe des Istwerts erfolgt analog zur Skalierung des Sollwerts, wie unter 4.1.1 eingestellt.

4.2.2. Byte 1 - Istwert Low-Byte

Die Ausgabe des Istwerts erfolgt analog zur Skalierung des Sollwerts, wie unter 4.1.1 eingestellt.

4.2.3. Byte 2 - Betriebszustand / Fehlercode des Antrieb

Die folgende Tabelle zeigt die möglichen Meldungen, die während des Betriebs auftreten können.

Fehler Code [dec]	Zustandsbeschreibung
Betriebszustände	
0	Normaler Betriebszustand
1	Antrieb im Inbetriebnahmelauf
2	Antrieb nicht initialisiert
11	Antrieb nicht im AUTO-Modus
14	(in Verbindung mit Ortsteuerung PSC.2)
Fehler im Umfeld des	
Antriebs	
3	Sollwertfehler
4	Drehmomentfehler
5	Not-Fahrt ist ausgelöst
6	Sollwertfehler des Prozesssensors
12	Position überfahren
13	Position nicht erreicht
11	Unterspannung der Versorgung
Fehler im Antrieb	
7	mechanischer Fehler / Positionierung
8	kritische/maximale Temperatur erreicht
9	Elektronik-Fehler / CRC
10	Verschleißgrenze erreicht
Kommunikationsfehler	
32	Keine Kommunikation mit dem Antrieb möglich

Hinweis: Beim Abgleich-Betrieb (automatisch oder manuell) kann die Fehlermeldung 32 zweimal auftreten, und zwar immer dann wenn eine Endlage erreicht wurde und die Messwerte gerade im Antrieb gespeichert werden. Im normalen Betrieb zeigt das Auftreten dieser Meldung eine Fehlfunktion an, wen sie länger als 10 sec erscheint.

4.2.4. Byte 3 - Adresse

Adresse für den Speicherzugriff.

4.2.5. Byte 4 - Data High-Byte

High-Byte der Daten, die ausgelesen wurden.

4.2.6. Byte 5 - Data Low-Byte

Low-Byte der Daten, die ausgelesen wurden.

5. Technische Daten

Kommunikationsprotokoll	CANopen V4	
Feldbus-Baudrate	einstellbar bis 500 kBaud	(auf Anfrage bis 1 MBaud
Zykluszeit Datenrefresh	250 ms	
Zykluszeit Datenübernahme	250 ms	
Prozeßdatenobjekt "Bus-Input"	8 Byte	Rx PD01
Prozeßdatenobjekt "Bus-Output"	6 Byte	Tx PD01

6. Parameterspeicheradressen

RAM-Parameter					
Adresse	Data high	Data low	Wertebereich	Einheit	Beschreibung
000	х	х	01000	% / ‰	aktueller digitaler Sollwert
001	х	х	01023	digit	aktueller Sollwert
002	х	х	01023	digit	aktueller Istwert
005	х	х	01000	% / ‰	aktueller digitaler Istwert
Diagnosedaten					
185	х	х	065536	EV x 50	Anzahl der Einschaltvorgänge
186	х	х	065536	EV	Anzahl der Einschaltvorgänge
					bei Übertemperatur
187	х	х	065536	h x 2	Betriebszeit des Antriebs
188	х	х	065536	min x 6	Betriebszeit des Motors
189	х	х	065536	min	Betriebszeit des Motors bei
					Übertemperatur

Grundsätzlich kann auf alle Daten zugegriffen werden, die in der Kommunikations-Software PSCS darstellt sind. Die gewünschten Adressen erhalten Sie auf Anforderung.

Achtung: Die momentane Auslegung erlaubt kein Schreiben von Parametern über den Feldbus zum Antrieb hin.

7. Servicedatenobjekte (SDO) nach CANopen Spezifikation DS-301

Objektadresse	Subindex	Wert	Bedeutung
0x1800	0x0		Number of entries
0x1800	0x1		COB-ID used by PDO
0x1800	0x2	0x0	Transmission type: synchroner Datentransfer
		0xff	Transmission type: asynchroner Datentransfer
0x1800	0x3	0x0	Inhibit time: alle 15 ms ein TxPDO
		0x2710	Inhibit time: ca. 1 s (Auflösung 100 µs)

Anhang: Prozessdatenobjekte CANopen in PS-AMS

-

Uni-Gate ID	Daten			
Object 2000 Bus-Input gemapped auf RxPDO1	Byte 0 % % Sollwert High-Byte Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	Byte 1 Sollwert Low-Byte 7 6 5 4 3 2 1 0	Byte 2 Prozess-Sensor High-Byte Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	Byte 3 Prozess-Sensor Low-Byte Bit Bit Bit Bit Bit Bit Bit 7 6 5 4 3 2 1 0
Object 2000 Bus-Input gemapped auf RxPDO1	Byte 4 Kommando 7 6 5 4 3 2 1 0	Byte 5 Adresse Bit Bit Bit Bit Bit Bit Bit Bit 7 6 5 4 3 2 1 0	Byte 6 Data High-Byte Bit Bit Bit Bit Bit Bit Bit Bit 7 7 6 5 4 3 2 1 0	Byte 7 Data Low-Byte Bit Bit Bit Bit Bit Bit Bit 10 7 6 5 4 3 2 1 0
Object 2001 Bus-Output gemapped auf TxPDO1	Byte 0 Istwert High-Byte 7 6 5 4 3 2 1 0	Byte 1 Istwert Low-Byte 7 6 5 4 3 2 1 0	Byte 2 Betriebszustand / Fehlercode Bit Bit Bit Bit Bit Bit Bit 7 6 5 4 3 2 1 0	Byte 3 Adresse 7 6 5 4 3 2 1 0
Object 2001 Bus-Output gemapped auf TxPDO1	Byte 4 Data High-Byte 7 6 5 4 3 2 1 0	Byte 5 Data Low-Byte 7 6 5 4 3 2 1 0		

Unsere Niederlassungen:

Italien

PS Automazione S.r.l. Via Pennella, 94 I-38057 Pergine Valsugana (TN) Tel.: <+39> 04 61-53 43 67 Fax: <+39> 04 61-50 48 62 E-Mail: <u>info@ps-automazione.it</u>

Indien

PS Automation India Pvt. Ltd. Srv. No. 25/1, Narhe Industrial Area, A.P. Narhegaon, Tal. Haveli, Dist. IND-411041 Pune Tel.: <+ 91> 20 25 47 39 66 Fax: <+ 91> 20 25 47 39 66 E-Mail: <u>sales@ps-automation.in</u>

Für weitere Niederlassungen und Partner scannen Sie bitte folgenden QR-Code oder besuchen Sie unsere Website unter https://www.ps-automation.com/ps-automation/standorte/

PS Automation GmbH Philipp-Krämer-Ring 13 D-67098 Bad Dürkheim Tel.: +49 (0) 6322 94980-0 E-mail: <u>info@ps-automation.com</u> www.ps-automation.com

